Auditorium Exercise Sheet 7
 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola

Department of Mathematics of Hamburg University Winter Semester 2023/2024
15.01 .2024

Table of contents

(1) The Laplace transform of a function

- Definition and properties
- Existence and uniqueness results
- Resolution of initial value problems by Laplace transform
(2) Equilibrium of autonomous ODE systems
- Equilibrium of autonomous systems
- Equilibrium of linear autonomous systems
(3) Exercises

Laplace transform

Given a function $f:[0, \infty) \rightarrow \mathbb{R}$, consider the mapping $F_{f}: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
F_{f}[s]:=\mathcal{L}[f(t)]:=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

We call F_{f} the Laplace transformation of f, while for all s such that the integral converges the function $F_{f}[s]=\mathcal{L}[f(t)]$ is the Laplace transform of f at point $t \geq 0$.

We denote the correspondence between f and its Laplace transform F_{f} (from now on simply F) by the Doetsch symbol:

$$
f(t) \multimap F(s) \quad F(s) \multimap f(t)
$$

Some properties of Laplace transform

- Linearity: $\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[g(t)]$, for all $a, b \in \mathbb{C}$
- Transformation of derivatives: for $k \in \mathbb{N}_{0}$,

$$
\mathcal{L}\left[f^{(k)}(t)\right]=s^{k} \mathcal{L}[f(t)]-s^{k-1} f(0)-s^{k-2} f^{\prime}(0)-\ldots-s f^{k-2}(0)-f^{k-1}(0),
$$

in particular: $\mathcal{L}\left[f^{\prime}(t)\right]=s \cdot \mathcal{L}[f(t)]-f(0)$
and $\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} \mathcal{L}[f(t)]-s \cdot f(0)-f^{\prime}(0)$

- Multiplication rule: $\mathcal{L}\left[t^{k} f(t)\right]=(-1)^{k} F^{(k)}(s)$, for $k \in \mathbb{N}_{0}$
- Damping-shifting property: $\mathcal{L}\left[e^{a t} \cdot f(t)\right]=F(s-a)$, for $a \in \mathbb{C}$
- Scaling property: $\mathcal{L}[f(\alpha t)]=\frac{F(s / \alpha)}{\alpha}$, for $\alpha>0$

Laplace transform of the Heaviside function

For any real value a, the Heaviside function h_{a} is the unit step function such that

$$
h_{a}(t):= \begin{cases}1 ; & \text { for } t \geq a \\ 0 ; & \text { for } t<a\end{cases}
$$

Observe that $h_{a}(t)=h_{0}(t-a)$. For $a \geq 0$, it is

$$
\mathcal{L}\left[h_{a}(t)\right]=\int_{0}^{\infty} e^{-s t} h_{a}(t) d t=\int_{a}^{\infty} e^{-s t} d t=\frac{e^{-a s}}{s}-\lim _{t \rightarrow \infty}\left(\frac{e^{-t s}}{s}\right)=\frac{e^{-a s}}{s} .
$$

A generalization yields the shifting property:

$$
\mathcal{L}\left[h_{a}(t) f(t-a)\right]=e^{-s a} \mathcal{L}[f(t)]
$$

Table of fundamental Laplace transforms

$f(t) \multimap F(s) \quad F(s) \multimap f(t)$

$f(t), t \geq 0$	$F(s)$	$s \in \mathbb{C}: \Re(s)>\gamma_{0}$
1	$\frac{1}{s}$	$\gamma_{0}=0$
t^{n}	$\frac{n!}{s^{n+1}}$	$\gamma_{0}=0$
$h_{a}(t)$, for $a \in \mathbb{R}_{0}^{+}$	$\frac{e^{-a s}}{s}$	$\gamma_{0}=0$
$e^{a t}$, for $a \in \mathbb{C}$	$\frac{1}{s-a}$	$\gamma_{0}=\Re(a)$
$e^{a t} \sin (\omega t)$, for $\omega \in \mathbb{R}$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$	$\gamma_{0}=\Re(a)$
$e^{a t} \cos (\omega t)$, for $\omega \in \mathbb{R}$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$	$\gamma_{0}=\Re(a)$

Existence and uniqueness of Laplace transform

A function $f:[0, \infty) \rightarrow \mathbb{R}$ is exponential of order $\gamma_{0} \in \mathbb{R}$ if there is some $C>0$ such that $|f(t)| \leq C e^{\gamma_{0} t}$, for all $t \geq 0$.

Theorem (Existence of Laplace transform)

If $f:[0, \infty) \rightarrow \mathbb{R}$ is exponential of order γ_{0} and piece-wise continuous, then its Laplace transform $F=F(s)$ exists for all $s \in \mathbb{C}$ such that $\mathfrak{R}(s)>\gamma_{0}$.

Theorem (Uniqueness of Laplace transform)

Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ exponential of order γ_{0} and piece-wise continuous. If $F(s)=G(s)$ for all $s \in \mathbb{C}$ such that $\mathfrak{R}(s)>\gamma_{0}$, then $f(t)=g(t)$ for all t continuity points of f, g.

From the last theorem we deduce that (under exponential growth and piece-wise continuity) the Laplace transform is invertible!

Laplace transform to solve linear IVPs with constant coefficients

Consider a linear ODE of order $m \in \mathbb{N}$ with constant coefficients and m initial conditions at point $t_{0}=0$, that is

$$
\left\{\begin{array}{l}
a_{m} y^{(m)}(t)+\cdots+a_{2} y^{\prime \prime}(t)+a_{1} y^{\prime}(t)+a_{0} y(t)=b(t) \tag{1}\\
y(0)=z_{0}, y^{\prime}(0)=z_{1}, \ldots, y^{(m-1)}(0)=z_{m-1}
\end{array}\right.
$$

for $a_{i}, z_{i} \in \mathbb{R}$ given.

- Applying the Laplace transformation to (1), we obtain a linear algebraic equation in $Y(s):=\mathcal{L}[y(t)]$
- Solve this latter for $Y(s)$, then invert the Laplace transform to obtain the solution $y(t)$ of (1)

Example 1 (1)

Determine the solution of the following second order IVP with the help of Laplace transform.

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)-4 y^{\prime}(t)+3 y(t)=1 ; t>0 \tag{2}\\
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.
$$

From the correspondence $y(t) \backsim \longrightarrow Y(s)$ for $s \in \mathbb{R}$, by linearity and applying the appropriate formulas we rewrite (2) as

$$
\begin{gathered}
\mathcal{L}\left[y^{\prime \prime}(t)\right]-4 \mathcal{L}\left[y^{\prime}(t)\right]+3 \mathcal{L}[y(t)]=\mathcal{L}[1] \\
{\left[s^{2} Y(s)-s y(\theta)-y^{\prime}(\theta)\right]-4[s Y(s)-y(\theta)]+3 Y(s)=\frac{1}{s}} \\
\left(s^{2}-4 s+3\right) Y(s)=\frac{1}{s}
\end{gathered}
$$

thus

$$
Y(s)=\frac{1}{s\left(s^{2}-4 s+3\right)}=\frac{1}{s(s-1)(s-3)}
$$

Example 1 (2)

Apply partial fraction decomposition:
$Y(s)=\frac{1}{s(s-1)(s-3)}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s-3}=\cdots=\frac{1}{3 s}-\frac{1}{2(s-1)}+\frac{1}{6(s-3)}$,
and observe that
$\frac{1}{s} \bullet 1, \quad \frac{1}{s-1} \multimap e^{t}, \quad \frac{1}{s-3} \bullet e^{3 t}$ for all real $s>\max \{0,1,3\}=3$,
hence

$$
Y(s)=\frac{1}{3} \mathcal{L}[1]-\frac{1}{2} \mathcal{L}\left[e^{t}\right]+\frac{1}{6} \mathcal{L}\left[e^{3 t}\right]=\mathcal{L}\left[\frac{1}{3}-\frac{e^{t}}{2}+\frac{e^{3 t}}{6}\right] \underset{\exists!}{\Longrightarrow}
$$

$\Longrightarrow y(t)=\mathcal{L}^{-1}[Y(s)]=\frac{1}{3}-\frac{e^{t}}{2}+\frac{e^{3 t}}{6}$ is the sol. of the IVP (2).

Equilibrium of autonomous systems

Consider an autonomous system of n ODEs

$$
\begin{equation*}
\mathbf{y}^{\prime}(t)=F(\mathbf{y}(t)) \tag{3}
\end{equation*}
$$

with $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\mathbf{y}(t)=\left(\begin{array}{c}y_{1}(t) \\ \vdots \\ y_{n}(t)\end{array}\right)$ differentiable on $I \subseteq \mathbb{R}$.

Definition (equilibria of autonomous systems)

A vector $\mathrm{y}_{0} \in \mathbb{R}^{n}$ such that $F\left(\mathrm{y}_{0}\right)=0$ is called a stationary point (or an equilibrium point) of the autonomous system $\mathbf{y}^{\prime}(t)=F(\mathbf{y}(t))$.

If \mathbf{y}_{0} stationary point of (3), the function $\tilde{\mathbf{y}}(t):=\mathbf{y}_{0}, \forall t \in I$ is such that $\tilde{\mathbf{y}}^{\prime}(t)=0=F\left(\mathbf{y}_{0}\right)=F(\tilde{\mathbf{y}}(t))$, for every $t \in I \Longrightarrow \mathbf{y}_{0}$ stationary sol. of (3).

We wonder if a solution of (3) which is "close" to an equilibrium point y_{0} at some initial time t_{0} remains "close" to y_{0} for larger t.

Definition (types of equilibria)

Let $\mathrm{y}_{0} \in \mathbb{R}^{n}$ be a stationary point for the autonomous system $\mathbf{y}^{\prime}(t)=F(\mathbf{y}(t))$ defined for $t \in I:=(\alpha, \infty) ; t_{0} \in I$. We say \mathbf{y}_{0} is a point of:

- uniformly ${ }^{*}$ stable equilibrium if $\forall \varepsilon>0, \exists \delta>0$ s.t., provided $\left|\mathbf{y}\left(t_{0}\right)-\mathbf{y}_{0}\right|<\delta$, then $\left|\mathbf{y}(t)-\mathbf{y}_{0}\right|<\varepsilon$ for all $t \geq t_{0}$;
- asymptotically stable equilibrium if \mathbf{y}_{0} is stable and attractive (i.e. $\exists \delta>0$ s.t. if $\left|\mathbf{y}\left(t_{0}\right)-\mathbf{y}_{0}\right|<\delta$, then $\lim _{t \rightarrow \infty}\left|\mathbf{y}(t)-\mathbf{y}_{0}\right|=0$);
- unstable equilibrium if it is not stable.

[^0]Specifically, for linear autonomous systems one makes use of the following necessary and sufficient condition.

Equilibrium of autonomous systems

Theorem (Equilibrium of autonomous systems)

Let $y_{0} \in \mathbb{R}^{n}$ be a stationary point for the system $\boldsymbol{y}^{\prime}(t)=F(\boldsymbol{y}(t))$ and let $J F\left(y_{0}\right)$ be the Jacobian matrix of F evaluated at point y_{0}, with $\left\{\lambda_{i}\right\}_{i=1, \ldots, n}$ eigenvalues of $J F\left(y_{0}\right)$. Then:

- if $\mathfrak{R}\left(\lambda_{i}\right)<0$ for every $i \in\{1, \ldots, n\} \Longrightarrow y_{0}$ is a point of asymptotically stable equilibrium;
- if there is at least one $i \in\{1, \ldots, n\}$ s.t. $\mathfrak{R}\left(\lambda_{i}\right)>0 \Longrightarrow y_{0}$ is a point of unstable equilibrium.

Notice that the Theorem does not cover all possible cases...

Example 2 (1)

Consider the (non-linear) autonomous system of differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=\alpha y_{1}+y_{2}\left(2+y_{1} y_{2}\right) \tag{4}\\
y_{2}^{\prime}(t)=\alpha y_{1}\left(y_{1}^{2}+1\right)+y_{1}+y_{2}
\end{array}\right.
$$

where $\alpha \neq-2$ is a real parameter and $t \in \mathbb{R}$.

- We may rewrite (4) as $\mathbf{y}^{\prime}(t)=F(\mathbf{y}(t))$, with $\mathbf{y}(t):=\binom{y_{1}(t)}{y_{2}(t)}$ and

$$
F(\mathbf{y}(t)):=\binom{\alpha y_{1}+y_{2}\left(2+y_{1} y_{2}\right)}{\alpha y_{1}\left(y_{1}^{2}+1\right)+y_{1}+y_{2}}
$$

- The system is homogeneous: $\mathbf{y}_{0}=(0,0)^{T}$ is a stationary point of (4), regardless on the value of α
- Apply the previous Theorem to determine the stability of $(0,0)^{T}$

Example 2 (2)

$F(\mathbf{y})=\binom{\alpha y_{1}+y_{2}\left(2+y_{1} y_{2}\right)}{\alpha y_{1}\left(y_{1}^{2}+1\right)+y_{1}+y_{2}} \Longrightarrow J F(\mathbf{y})=\left(\begin{array}{cc}\alpha+y_{2}^{2} & 2+2 y_{1} y_{2} \\ \alpha+1+3 \alpha y_{1}^{2} & 1\end{array}\right)$,
hence at $y_{0}=(0,0)^{T}: J F\left(y_{0}\right)=\left(\begin{array}{cc}\alpha & 2 \\ \alpha+1 & 1\end{array}\right)$.
Compute eigenvalues:

$$
\begin{aligned}
& \quad \operatorname{det}\left(\begin{array}{cc}
\alpha-\lambda & 2 \\
\alpha+1 & 1-\lambda
\end{array}\right)=0 \Longleftrightarrow \lambda^{2}-(\alpha+1) \lambda-(\alpha+2)=0 \\
& \Longrightarrow \lambda_{1}=-1, \lambda_{2}=\alpha+2 .
\end{aligned}
$$

Apply the Theorem: since $\mathfrak{R}\left(\lambda_{1}\right)=-1<0$, it is

- if $\alpha<-2, \mathfrak{R}\left(\lambda_{1 / 2}\right)<0 \Longrightarrow \mathbf{y}_{0}=(0,0)^{T}$ is an asymptotically stable equilibrium;
- if $\alpha>-2, \mathfrak{R}\left(\lambda_{2}\right)>0 \Longrightarrow \mathrm{y}_{0}=(0,0)^{T}$ is an unstable equilibrium.

Equilibrium of linear autonomous systems

Theorem (Stability criterion for linear autonomous systems)

Let $\boldsymbol{y}_{0} \in \mathbb{R}^{n}$ be a stationary point for the linear system $\boldsymbol{y}(t)=A \cdot \boldsymbol{y}(t)$ with $A \in \mathbb{R}^{n \times n}$, and let $\left\{\lambda_{i}\right\}_{i=1, \ldots, n}$ be the eigenvalues of A. It holds:

- if $\mathfrak{R}\left(\lambda_{i}\right)<0$ for every $i \in\{1, \ldots, n\} \Longrightarrow y_{0}$ is a point of asymptotically stable equilibrium
- if $\mathfrak{R}\left(\lambda_{i}\right) \leq 0$ for every $i \in\{1, \ldots, n\}$ AND whenever $\mathfrak{R}\left(\lambda_{i}\right)=0$ it is $g\left(\lambda_{i}\right)=a\left(\lambda_{i}\right) \Longrightarrow y_{0}$ is a point of stable equilibrium
- if there is at least one $i \in\{1, \ldots, n\}$ s.t. $\mathfrak{R}\left(\lambda_{i}\right)>0 O R$ $\left\{\mathfrak{R}\left(\lambda_{i}\right)=0\right.$ with $\left.g\left(\lambda_{i}\right)<a\left(\lambda_{i}\right)\right\} \Longrightarrow y_{0}$ is a point of unstable equilibrium.

Remark on linear autonomous systems: without loss of generality we can reduce to homogeneous case (the type of stability is NOT affected when applying a translation!) and thus to $\mathrm{y}_{0}=0$ as stationary point.

Example 3

- Given the autonomous system $\mathbf{y}^{\prime}(t)=A_{1} \cdot \mathbf{y}(t)$ with $A_{1}=\left(\begin{array}{cc}-4 & 0 \\ 1 & 1\end{array}\right)$, the eigenvalues of A are $\lambda_{1}=-4$ and $\lambda_{2}=1$.
Apply the stability criterion: since $\mathfrak{R}\left(\lambda_{2}\right)=1>0, y_{0}=(0,0)^{T}$ is a point of unstable equilibrium.
- Considering instead $A_{2}=\left(\begin{array}{cc}-4 & -1 \\ 2 & -2\end{array}\right)$, we find $\operatorname{det}\left(\begin{array}{cc}-4-\lambda & -1 \\ 2 & -2-\lambda\end{array}\right)=\lambda^{2}+6 \lambda+10=(\lambda+3+i)(\lambda+3-i)$, thus the eigenvalues are $\lambda_{1 / 2}=-3 \pm i$.
Being $\mathfrak{R}\left(\lambda_{1}\right)<0$ and $\mathfrak{R}\left(\lambda_{2}\right)<0$, from the criterion the point $\mathrm{y}_{0}=(0,0)^{T}$ is of asymptotically stable equilibrium for $\mathrm{y}^{\prime}(t)=A_{2} \cdot \mathbf{y}(t)$.

Exercises

- Exercise 1. Determine the solution of the following IVP applying the Laplace transform.

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+y^{\prime}(t)=f(t), \quad t>0 \\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $f(t)=1$ in $1 \leq t<5$ and $f(t)=0$ otherwise.

- Exercise 2. Determine the function $f:[0, \infty) \rightarrow \mathbb{R}$ such that its Laplace transform is

$$
F(s)=\frac{8}{s^{3}(s+2)}, \quad \text { for (some) } s \in \mathbb{R}
$$

Hint: employ first partial fraction decomposition writing

$$
\frac{8}{s^{3}(s+2)}=\frac{A s^{2}+B s+C}{s^{3}}+\frac{D}{s+2}
$$

for $A, B, C, D \in \mathbb{R}$ to be determined.

Exercises

- Exercise 3. Determine the stationary points and their equilibrium for the (non-linear) autonomous second order differential equation

$$
\begin{equation*}
\mathbf{y}^{\prime \prime}(t)+\mathbf{y}^{\prime}(t)-\mathbf{y}(t)^{2}+1=0 . \tag{5}
\end{equation*}
$$

Hint: Rewrite (5) as system of two first-order ODEs.

- Exercise 4. For any of the following matrices A_{i}, analyze the stability of the corresponding linear homogeneous system represented by $\mathbf{y}^{\prime}(t)=A_{i} \cdot \mathbf{y}(t)$.
(i) $A_{1}=\left(\begin{array}{cc}0 & -1 / 2 \\ 18 & 0\end{array}\right)$;
(ii) $A_{2}^{\alpha}=\left(\begin{array}{ccc}\alpha & 0 & -1 \\ 1 & -5 & 0 \\ 0 & 0 & \alpha\end{array}\right), \alpha \in \mathbb{R}$;
(iii) $A_{3}^{\alpha}=\left(\begin{array}{cccc}i & 0 & 0 & 0 \\ 7 & -i & 0 & 0 \\ 0 & \alpha & i & 0 \\ -2 & 0 & 4 & -i\end{array}\right), \alpha \in \mathbb{R}$.

AUDITORIUM EXERCISE CLASS 7
EXERCISE $4 \quad Y^{\prime}(t)=\underbrace{A} \cdot Y(t) \rightarrow$ linear homogeneous system of Determine stability. $\in M_{m \times m}(\mathbb{R}) \quad n$ apes
(i) $A=\left(\begin{array}{cc}0 & -1 / 2 \\ 18 & 0\end{array}\right) \quad Y_{0}=\binom{0}{0} \rightarrow$ equilibrium point (since the system io f

Compute eigenvalues of $A:\left|\begin{array}{cc}-\lambda & -1 / 2 \\ 18 & -\lambda\end{array}\right|=\lambda^{2}+9=0 \Leftrightarrow \lambda \begin{gathered}\lambda= \pm 3 i\end{gathered}, \operatorname{Re}\left(\lambda_{1 / 2}\right)=0 \Rightarrow$
\Rightarrow meed to check multiplicity, $\quad a\left(\lambda_{1 / 2}\right)=1 \geq g\left(\lambda_{1 / 2}\right) \geq 1 \Rightarrow$ germ. multiplicity is 1 = algebraic
$\Rightarrow y_{0}$ stable equilibrium. ,multipliaty!
TH.
(ii) $A_{\alpha}=\left(\begin{array}{rrr}\alpha & 0 & -1 \\ 1 & -5 & 0 \\ 0 & 0 & \alpha\end{array}\right), \alpha \in \mathbb{R} \quad Y_{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ equilibrium point

$$
\operatorname{det}\left(\begin{array}{ccc}
\alpha-\lambda & 0 & -1 \\
1 & -5-\lambda & 0 \\
0 & 0 & \alpha-\lambda
\end{array}\right)=(\alpha-\lambda)(\alpha-\lambda)(-5-\lambda)=-(\lambda-\alpha)^{2}(\lambda+5)=0 \xrightarrow{>\lambda_{1}=\lambda_{2}=\alpha ? ? ?}
$$

- If $\alpha>0 \Rightarrow \lambda_{1 / 2}=\alpha, \operatorname{Re}\left(\lambda_{1 / 2}\right)>0 \stackrel{\text { TAM. }}{\Rightarrow}$ unstable equilibrium
- If $\alpha<0 \Rightarrow \lambda_{1 / 2}=\alpha<0, \operatorname{Re}\left(\lambda_{1 / 2}\right)<0, \operatorname{Re}\left(\lambda_{3}\right)<0 \underset{T+m}{ } \Rightarrow$ asymptotically stable equilibrimin
$I_{f} \alpha=0 \Rightarrow \operatorname{Re}\left(\lambda_{1,2}=0\right.$, multiplicity $=2$, need to compute its geometric milt,!
$\Lambda=g(0)<a(0)=2 \Rightarrow$ unstable equilibrium.
THY.

EXERCISE $1 \quad y=y(t), f=f(t)$. Solve (IVP) applying the Laplace transform.

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y^{\prime}=f, \quad t>0 \tag{IvF}\\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { It is: } \\
& f(t)=h_{1}(t)-h_{5}(t)= \begin{cases}0-0=0 ; & t<1 \\
1-0=1 ; & 1 \leq t<5 \\
1-1=0 ; & t \geq 5\end{cases}
\end{aligned}
$$

$f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $f(t)=\left\{\begin{array}{l}1 ; 1 \leq t<5 \\ 0 ; \text { elsewhere }\end{array}\right.$

$$
h_{a}(t)=\left\{\begin{array}{ll}
1 ; & t \geq a \\
0 ; & t<a
\end{array} \quad \begin{array}{l}
\text { Heaviside } \\
\text { function }
\end{array}\right.
$$

Apply Laplace transformation to (IVP): $\mathcal{L}\left[y^{\prime \prime}+y^{\prime}\right]=\mathcal{L}[f]=\mathcal{L}\left[h_{1}-h_{5}\right]$

$$
\mathcal{L} \text { linearity of } \mathcal{L}
$$

$$
\text { need to convert } y(s)=-\frac{y}{x}(t)
$$

$$
\frac{1}{s^{2}(s+1)} \stackrel{\downarrow}{=} \frac{A s+B}{s^{2}}+\frac{C}{s+1}=\ldots=\frac{1-s}{s^{2}}+\frac{1}{s+1}=\frac{1}{s^{2}}-\frac{1}{s}+\frac{1}{s+1} .
$$

Hence: $Y(s)=\left(e^{-s}-e^{-5 s}\right)\left(\frac{1}{s^{2}}-\frac{1}{s}+\frac{1}{s+1}\right)=-\frac{e^{-s}}{s}+\frac{e^{-5 s}}{s}+\frac{e^{-s}}{s^{2}}-\frac{e^{-5 s}}{s^{2}}+\frac{e^{-s}}{s+1}-\frac{e^{-5 s}}{s+1} \leftarrow$
Invert \mathcal{L} en each form:
$\frac{e^{-s}}{s} \multimap \frac{h_{1}(t)}{}\left|\frac{e^{-5 s}}{s} \multimap h_{5}(t)\right| \frac{e^{-s}}{s^{2}}=e^{-s} \cdot \frac{1}{s^{2}}$ where $\frac{1}{s^{2}} \ldots t$ (table)
$\frac{\frac{-e^{5}}{s^{2}}}{s^{2}}=e^{-5 s} \cdot \frac{1}{s^{2}}, \frac{1}{s^{2}} \multimap t$; from $\begin{array}{r}\text { with } a=5 \\ g(t)=\end{array}$ we find: $\frac{e^{-5 s}}{s^{2}} \multimap h_{5}(t)(t-5)$
$\frac{e^{-s}}{s+1}=e^{-s} \cdot \frac{1}{s+1}$ with $\frac{1}{s+1} \multimap e^{-t}$ (table); from
 $\frac{e^{-s}}{s^{2}} \rightleftharpoons h_{1}(t) \cdot g(t-1)=h_{1}(t) \cdot(t-1)$

$$
\begin{aligned}
& \mathcal{L}[y]=: Y_{(s)} \quad \text { from the derivathia } \mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]=\mathcal{L}\left[h_{1}\right]-\mathcal{L}\left[h_{5}\right]
\end{aligned}
$$

[^0]: * For linear, autonomous systems, all points of stable equilibrium are uniformly stable and viceversa.

