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Laplace transform

Given a function f ∶ [0,∞)→ R, consider the mapping Ff ∶ D ⊆ C→ C
such that

Ff [s] ∶= L[f (t)] ∶= ∫
∞

0
e−st f (t) dt.

We call Ff the Laplace transformation of f , while for all s such that the
integral converges the function Ff [s] = L[f (t)] is the Laplace transform
of f at point t ≥ 0.

We denote the correspondence between f and its Laplace transform Ff
(from now on simply F ) by the Doetsch symbol:

f (t) ○—● F (s) F (s) ●—○ f (t)
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Some properties of Laplace transform

Linearity: L[af (t) + bg(t)] = aL[f (t)] + bL[g(t)], for all a,b ∈ C

Transformation of derivatives: for k ∈ N0,

L[f (k)(t)] = skL[f (t)]−sk−1f (0)−sk−2f ′(0)−. . .−sf k−2(0)−f k−1(0),

in particular: L[f ′(t)] = s ⋅L[f (t)] − f (0)
and L[f ′′(t)] = s2

L[f (t)] − s ⋅ f (0) − f ′(0)

Multiplication rule: L [tk f (t)] = (−1)kF (k)(s), for k ∈ N0

Damping-shifting property: L[eat ⋅ f (t)] = F (s − a), for a ∈ C

Scaling property: L [f (αt)] = F(s/α)
α , for α > 0
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Laplace transform of the Heaviside function

For any real value a, the Heaviside function ha is the unit step function
such that

ha(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

1; for t ≥ a;
0; for t < a.

Observe that ha(t) = h0(t − a). For a ≥ 0, it is

L[ha(t)] = ∫
∞

0
e−stha(t) dt = ∫

∞

a
e−st dt = e−as

s
− lim

t→∞
(e
−ts

s
) = e−as

s
.

A generalization yields the shifting property:

L[ha(t)f (t − a)] = e−saL[f (t)]
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Table of fundamental Laplace transforms

f (t) ○—● F (s) F (s) ●—○ f (t)

f (t), t ≥ 0 F (s) s ∈ C ∶ R(s) > γ0

1 1
s γ0 = 0

tn n!
sn+1 γ0 = 0

ha(t), for a ∈ R+0
e−as
s γ0 = 0

eat , for a ∈ C 1
s−a γ0 =R(a)

eat sin(ωt), for ω ∈ R ω
(s−a)2+ω2 γ0 =R(a)

eat cos(ωt), for ω ∈ R s−a
(s−a)2+ω2 γ0 =R(a)
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Existence and uniqueness of Laplace transform

A function f ∶ [0,∞)→ R is exponential of order γ0 ∈ R if there is some
C > 0 such that ∣f (t)∣ ≤ Ceγ0t , for all t ≥ 0.

Theorem (Existence of Laplace transform)
If f ∶ [0,∞)→ R is exponential of order γ0 and piece-wise continuous, then
its Laplace transform F = F (s) exists for all s ∈ C such that R(s) > γ0.

Theorem (Uniqueness of Laplace transform)

Let f ,g ∶ [0,∞)→ R exponential of order γ0 and piece-wise continuous.
If F (s) = G(s) for all s ∈ C such that R(s) > γ0, then f (t) = g(t) for all t
continuity points of f ,g .

From the last theorem we deduce that (under exponential growth and
piece-wise continuity) the Laplace transform is invertible!
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Laplace transform to solve linear IVPs with
constant coefficients

Consider a linear ODE of order m ∈ N with constant coefficients and m
initial conditions at point t0 = 0, that is

⎧⎪⎪⎨⎪⎪⎩

amy
(m)(t) + ⋅ ⋅ ⋅ + a2y

′′(t) + a1y
′(t) + a0y(t) = b(t)

y(0) = z0, y ′(0) = z1, . . . , y (m−1)(0) = zm−1,
(1)

for ai , zi ∈ R given.

Applying the Laplace transformation to (1), we obtain a linear
algebraic equation in Y (s) ∶= L[y(t)]

Solve this latter for Y (s), then invert the Laplace transform to obtain
the solution y(t) of (1)
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Example 1 (1)
Determine the solution of the following second order IVP with the help of
Laplace transform.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y ′′(t) − 4y ′(t) + 3y(t) = 1; t > 0
y(0) = 0
y ′(0) = 0

(2)

From the correspondence y(t) ○—●Y (s) for s ∈ R, by linearity and
applying the appropriate formulas we rewrite (2) as

L [y ′′(t)] − 4L [y ′(t)] + 3L [y(t)] = L [1]

[s2Y (s) − s���y(0) −���y ′(0)] − 4[sY (s) −���y(0)] + 3Y (s) = 1
s

(s2 − 4s + 3)Y (s) = 1
s

thus
Y (s) = 1

s(s2 − 4s + 3) =
1

s(s − 1)(s − 3) .
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Example 1 (2)

Apply partial fraction decomposition:

Y (s) = 1
s(s − 1)(s − 3) =

A

s
+ B

s − 1
+ C

s − 3
= ⋅ ⋅ ⋅ = 1

3s
− 1

2(s − 1) +
1

6(s − 3) ,

and observe that

1
s
●—○ 1,

1
s − 1

●—○ et , 1
s − 3

●—○ e3t for all real s > max{0,1,3} = 3,

hence

Y (s) = 1
3
L[1]−1

2
L[et] + 1

6
L[e3t] = L [1

3
− et

2
+ e3t

6
]Ô⇒
∃!

Ô⇒ y(t) = L−1[Y (s)] = 1
3 −

et

2 +
e3t

6 is the sol. of the IVP (2).
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Equilibrium of autonomous systems

Consider an autonomous system of n ODEs

y′(t) = F (y(t)), (3)

with F ∶ Rn → Rn and y(t) =
⎛
⎜
⎝

y1(t)
⋮

yn(t)

⎞
⎟
⎠

differentiable on I ⊆ R.

Definition (equilibria of autonomous systems)
A vector y0 ∈ Rn such that F (y0) = 0 is called a stationary point
(or an equilibrium point) of the autonomous system y′(t) = F (y(t)).

If y0 stationary point of (3), the function ỹ(t) ..= y0, ∀t ∈ I is such that
ỹ′(t) = 0 = F (y0) = F (ỹ(t)), for every t ∈ I Ô⇒ y0 stationary sol. of (3).
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We wonder if a solution of (3) which is "close" to an equilibrium point y0
at some initial time t0 remains "close" to y0 for larger t.

Definition (types of equilibria)
Let y0 ∈ Rn be a stationary point for the autonomous system
y′(t) = F (y(t)) defined for t ∈ I ..= (α,∞); t0 ∈ I . We say y0 is a point of:

uniformly* stable equilibrium if ∀ε > 0,∃ δ > 0 s.t., provided
∣y(t0) − y0∣ < δ, then ∣y(t) − y0∣ < ε for all t ≥ t0;
asymptotically stable equilibrium if y0 is stable and attractive
(i.e. ∃ δ > 0 s.t. if ∣y(t0) − y0∣ < δ, then limt→∞ ∣y(t) − y0∣ = 0);
unstable equilibrium if it is not stable.

* For linear, autonomous systems, all points of stable equilibrium are uniformly stable
and viceversa.

Specifically, for linear autonomous systems one makes use of the following
necessary and sufficient condition.
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Equilibrium of autonomous systems

Theorem (Equilibrium of autonomous systems)

Let y0 ∈ Rn be a stationary point for the system y′(t) = F (y(t)) and let
JF (y0) be the Jacobian matrix of F evaluated at point y0, with {λi}i=1,...,n
eigenvalues of JF (y0). Then:

if R(λi) < 0 for every i ∈ {1, . . . ,n} Ô⇒ y0 is a point of
asymptotically stable equilibrium;
if there is at least one i ∈ {1, . . . ,n} s.t. R(λi) > 0 Ô⇒ y0 is a point
of unstable equilibrium.

Notice that the Theorem does not cover all possible cases...
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Example 2 (1)

Consider the (non-linear) autonomous system of differential equations

⎧⎪⎪⎨⎪⎪⎩

y1
′(t) = αy1 + y2(2 + y1y2)

y2
′(t) = αy1(y2

1 + 1) + y1 + y2,
(4)

where α ≠ −2 is a real parameter and t ∈ R.

We may rewrite (4) as y′(t) = F (y(t)), with y(t) ..= (y1(t)
y2(t)

) and

F (y(t)) ..= ( αy1 + y2(2 + y1y2)
αy1(y2

1 + 1) + y1 + y2
)

The system is homogeneous: y0 = (0,0)T is a stationary point of (4),
regardless on the value of α

Apply the previous Theorem to determine the stability of (0,0)T
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Example 2 (2)

F (y) = ( αy1 + y2(2 + y1y2)
αy1(y2

1 + 1) + y1 + y2
) Ô⇒ JF (y) = ( α + y2

2 2 + 2y1y2
α + 1 + 3αy2

1 1
) ,

hence at y0 = (0,0)T : JF (y0) = (
α 2

α + 1 1
) .

Compute eigenvalues:

det(α − λ 2
α + 1 1 − λ) = 0 ⇐⇒ λ2 − (α + 1)λ − (α + 2) = 0

Ô⇒ λ1 = −1, λ2 = α + 2.

Apply the Theorem: since R(λ1) = −1 < 0, it is
if α < −2, R(λ1/2) < 0 Ô⇒ y0 = (0,0)T is an asymptotically stable
equilibrium;
if α > −2, R(λ2) > 0 Ô⇒ y0 = (0,0)T is an unstable equilibrium.
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Equilibrium of linear autonomous systems

Theorem (Stability criterion for linear autonomous systems)

Let y0 ∈ Rn be a stationary point for the linear system y′(t) = A ⋅ y(t) with
A ∈ Rn×n, and let {λi}i=1,...,n be the eigenvalues of A. It holds:

if R(λi) < 0 for every i ∈ {1, . . . ,n} Ô⇒ y0 is a point of
asymptotically stable equilibrium

if R(λi) ≤ 0 for every i ∈ {1, . . . ,n} AND whenever R(λi) = 0 it is
g(λi) = a(λi) Ô⇒ y0 is a point of stable equilibrium

if there is at least one i ∈ {1, . . . ,n} s.t. R(λi) > 0 OR
{R(λi) = 0 with g(λi) < a(λi)} Ô⇒ y0 is a point of unstable
equilibrium.

Remark on linear autonomous systems: without loss of generality we can
reduce to homogeneous case (the type of stability is NOT affected when
applying a translation!) and thus to y0 = 0 as stationary point.

Differential Equations I Auditorium Exercise Sheet 7 15.01.2024 14 / 14



Example 3

Given the autonomous system y′(t) = A1 ⋅ y(t) with A1 = (
−4 0
1 1

),

the eigenvalues of A are λ1 = −4 and λ2 = 1.

Apply the stability criterion: since R(λ2) = 1 > 0, y0 = (0,0)T is a
point of unstable equilibrium.

Considering instead A2 = (
−4 −1
2 −2), we find

det(−4 − λ −1
2 −2 − λ) = λ

2 + 6λ + 10 = (λ + 3 + i)(λ + 3 − i), thus the

eigenvalues are λ1/2 = −3 ± i .
Being R(λ1) < 0 and R(λ2) < 0, from the criterion the point
y0 = (0,0)T is of asymptotically stable equilibrium for y′(t) = A2 ⋅y(t).
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Exercises
Exercise 1. Determine the solution of the following IVP applying the
Laplace transform.

{
y ′′(t) + y ′(t) = f (t), t > 0;
y(0) = y ′(0) = 0,

where f ∶ R→ R s.t. f (t) = 1 in 1 ≤ t < 5 and f (t) = 0 otherwise.

Exercise 2. Determine the function f ∶ [0,∞)→ R such that its
Laplace transform is

F (s) = 8
s3(s + 2) , for (some) s ∈ R.

Hint: employ first partial fraction decomposition writing

8
s3(s + 2) =

As2 +Bs + C
s3 + D

s + 2
,

for A,B,C ,D ∈ R to be determined.
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Exercises
Exercise 3. Determine the stationary points and their equilibrium for
the (non-linear) autonomous second order differential equation

y′′(t) + y′(t) − y(t)2 + 1 = 0. (5)

Hint: Rewrite (5) as system of two first-order ODEs.
Exercise 4. For any of the following matrices Ai , analyze the stability
of the corresponding linear homogeneous system represented by
y′(t) = Ai ⋅ y(t).

(i) A1 = (
0 −1/2
18 0 );

(ii) Aα
2 =
⎛
⎜
⎝

α 0 −1
1 −5 0
0 0 α

⎞
⎟
⎠
, α ∈ R;

(iii) Aα
3 =
⎛
⎜⎜⎜
⎝

i 0 0 0
7 −i 0 0
0 α i 0
−2 0 4 −i

⎞
⎟⎟⎟
⎠
, α ∈ R.
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